
CreativE

Tomasz Wiszkowski

CreativE ii

COLLABORATORS

TITLE :

CreativE

ACTION NAME DATE SIGNATURE

WRITTEN BY Tomasz Wiszkowski April 15, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

CreativE iii

Contents

1 CreativE 1

1.1 CreativE . 1

1.2 Introduction . 2

1.3 Compatibility . 3

1.4 New commands . 3

1.5 Alloc() . 4

1.6 Chk() . 4

1.7 CoerceMethod()/CoerceMethodA() . 5

1.8 CtrlD()/CtrlE()/CtrlF() . 5

1.9 DoMethod()/DoMethodA() . 6

1.10 DoMethod()/DoMethodA() . 6

1.11 Eof() . 7

1.12 Fclose() . 7

1.13 Fopen() . 8

1.14 Free() . 8

1.15 Get()/Gets() . 9

1.16 GetA4() . 9

1.17 PutF() . 10

1.18 ReadB() . 10

1.19 Set()/Sets() . 11

1.20 Size() . 11

1.21 WriteB() . 11

1.22 New Keywords . 12

1.23 LINKABLE . 12

1.24 NOSTARTUP . 13

1.25 k0002 . 13

1.26 UTILLIB . 13

1.27 INLINE . 14

1.28 k0005 . 14

1.29 Lib support . 15

CreativE iv

1.30 New variables . 16

1.31 New constants . 17

1.32 New operators . 17

1.33 LONG strings . 17

1.34 Normal strings . 18

1.35 Formatted I/O functions . 18

1.36 Assembler part . 18

1.37 The Patcher . 19

1.38 I wish to thank to... 19

1.39 Hi, it’s me! :) . 20

1.40 PreProcessor . 20

1.41 #date . 20

1.42 What’s that? . 21

1.43 New error and warning messages . 21

1.44 Inline commands . 24

1.45 Other things . 25

1.46 Member . 25

1.47 Another IF expression format . 26

1.48 Modules vs inline code . 26

1.49 Expressions swap . 26

CreativE 1 / 27

Chapter 1

CreativE

1.1 CreativE

CreativE 2.0 [giftware]
~~~~~~~~~~~~~~

Introduction
About CreativE

Compatibility
About the things that may not work

Commands
About some new commands

Preprocessor
About new preprocessor commands

Keywords
About some new keywords

Variables
About some new variables

Constants
About some new constants

Operators
About some new operators (new!)

LONG strings
About "LONG" strings

Normal strings
About ’Normal’ strings



CreativE 2 / 27

Formatted I/O
About formatted output

Assembler part
About new assembler instructions

Patcher
About the patcher

Error messages
About new error messages

Inline cmds
About commands that should work faster now

Others
About some other things...

Thanks
About some people I wish to thank

Author
About me

BOLD means: new features here

1.2 Introduction

Few months ago author of great programming language Wouter ←↩
van

Oortmerssen decided to release a free version of E with sources
and (afaik) gave up developing it. Now there are only a few people
who decided to keep it alive, but it’s a very hard work. One of
those people is

me
. Now I present a bit enhanced

version of this great language. I will develope it as long as
possible.

Current version of CreativE is the first public release, and, I
hope, it will work fine with all the sources for previous versions
of E (see

Compatibily
).

CreativE is GIFTWARE, so if you use it and like it ;), you should
send me a gift (or sth ;).

I TAKE NO RESPONSIBILITY blah blah blah. You know what I want to
say ;)



CreativE 3 / 27

Please note this version is rewritten. I had a hd crash few weeks ago
and I lost all the sources; anyway - this should be _STABLE_ now :).
Almost everything has changed comparing to the pre-2.0 versions. Some
commands are skipped, some things has changed completely or partially;
I suggest reading this guide again...

1.3 Compatibility

This node should never appear, but because of some changes I have
made to E it did. The changes give You more power but force You to
fix Your code a bit. So, here’s the list:

String formatting

The problem is in the ’%’ sign. EC v3.3a placed a normal percent
char there. My version lets you use C alike format strings (%ld,
%s etcetera). That’s why you MUST place double percent sign (%%)
in command if you want it in your output (only for commands that
use formatted output, e.g. WriteF, PrintF, Vfprintf etcetera).

1.4 New commands

This is the whole list of commands I have added to current
release.

Alloc()

Chk()

CoerceMethod()

CoerceMethodA()

CtrlD()

CtrlE()

CtrlF()

DoMethod()

DoMethodA()

DoSuperMethod()

DoSuperMethodA()



CreativE 4 / 27

Eof()

Fclose()

Fopen()

Free()

Get()

GetA4()

Gets()

PutF()

ReadB()

Set()

Sets()

Size()

WriteB()

1.5 Alloc()

Alloc()

SYNOPSIS
mem:=Alloc(size)

FUNCTION
Function allocates POOL memory if it is present. Pool
allocations are quite fast and prevent memory fragmentation.
If no pool is created, function will call New() instead.

INPUTS
size - size of memory to alloc

RESULT
mem - pointer to allocated memory or 0 if allocation failed

SEE ALSO

Free()

1.6 Chk()



CreativE 5 / 27

Chk()

SYNOPSIS
bool:=Chk(a)

FUNCTION
Function checks parameter and returns FALSE if it is equal to
0 or TRUE if it’s not.

INPUTS
a - variable, expression or anything else to be checked

RESULT
bool - boolean value

SEE ALSO

1.7 CoerceMethod()/CoerceMethodA()

CoerceMethod()/CoerceMethodA()

SYNOPSIS
res:=CoerceMethod(class, object, message, ...)
res:=CoerceMethodA(class, object, message)

FUNCTION
Function invokes the supplied message on the specific object as
though it were the specified class

INPUTS
class - pointer to boopsi class
object - pointer to boopsi object
message - method-specific message to be send

RESULT
res - class and message specific result

NOTE
This function is v36+ only!

SEE ALSO

DoMethod()
,
DoSuperMethod()

1.8 CtrlD()/CtrlE()/CtrlF()

CtrlD()/CtrlE()/CtrlF()



CreativE 6 / 27

SYNOPSIS
bool:=CtrlD()
bool:=CtrlE()
bool:=CtrlF()

FUNCTION
Function checks for breaks and returns TRUE if the signal was
received

INPUTS
none

RESULT
bool - holds TRUE if break was received

SEE ALSO

1.9 DoMethod()/DoMethodA()

DoMethod()/DoMethodA()

SYNOPSIS
res:=DoMethod(object, message, ...)
res:=DoMethodA(object, message)

FUNCTION
Function invokes the supplied message on the specified object

INPUTS
object - pointer to boopsi object
message - method-specific message to be send

RESULT
res - object and message specific result

NOTE
This function is v36+ only!

SEE ALSO

CoerceMethod()
,
DoSuperMethod()

1.10 DoMethod()/DoMethodA()

DoSuperMethod()/DoSuperMethodA()

SYNOPSIS
res:=DoSuperMethod(class, object, message, ...)
res:=DoSuperMethodA(class, object, message)



CreativE 7 / 27

FUNCTION
Function invokes the supplied message on the specified object
though as it were the superclass of the specified class

INPUTS
class - pointer to boopsi class
object - pointer to boopsi object
message - method-specific message to be send

RESULT
res - class and message specific result

NOTE
This function is v36+ only!

SEE ALSO

CoerceMethod()
,
DoMethod()

1.11 Eof()

Eof()

SYNOPSIS
bool:=Eof(fh)

FUNCTION
Function checks if the EOF has been reached

INPUTS
fh - pointer to DOS filehandle structure

RESULT
bool - holds TRUE if the file reached EOF, otherwise it’s false

SEE ALSO

Size()

1.12 Fclose()

Fclose()

SYNOPSIS
Fclose(fh)

FUNCTIONS
Function closes file opened previously with Fopen()



CreativE 8 / 27

INPUTS
fh - filehandle obtained from Fopen()

RESULT
none

SEE ALSO

Fopen()

1.13 Fopen()

Fopen()

SYNOPSIS
fh:=Fopen(name, mode)

FUNCTION
function opens DOS file using standard Open() command and stores
the filehandle in global list of filehandles. All the opened files
will be closed automatically at the end of program

INPUTS
name - name of file to be opened
mode - open file mode

RESULT
fh - filehandle that can be used with any DOS command

SEE ALSO

Fclose()
,
ReadB()

,
WriteB()

1.14 Free()

Free()

SYNOPSIS
Free(mem)

FUNCTION
Function disposes memory allocated previously with Alloc() command

INPUTS
mem - pointer to memory obtained from Alloc()



CreativE 9 / 27

RESULT
none

SEE ALSO

Alloc()

1.15 Get()/Gets()

Get()/Gets()

SYNOPSIS
res:=Get(object, attr, store)
res:=Gets(object, attr)

FUNCTION
Ask specified object for a value assigned to specified attribute

INPUTS
object - pointer to boopsi object
attr - attribute tag id
store - pointer to storage for the answer

RESULT
res - value assigned to specified attribute (Gets);

FALSE if the inquiries of attribute are not provided by the
object’s class (Get)

NOTE
This function is v36+ only!

SEE ALSO

Set()

1.16 GetA4()

GetA4()

SYNOPSIS
GetA4()

FUNCTION
Restore A4 register

INPUTS
none

RESULT
none



CreativE 10 / 27

NOTE
This function don’t have to be called before use. You can use it
only in places You need it. It won’t work with library mode.

BUGS
None known.

SEE ALSO

1.17 PutF()

PutF()

SYNOPSIS
PutF(fh, formatstr, args...)

FUNCTION
Function writes formatted string to selected filehandle

INPUTS
fh - filehandle
formatstr - C or E alike formatstring
args - list of arguments

RESULT
none

SEE ALSO

1.18 ReadB()

ReadB()

SYNOPSIS
blks:=ReadB(fh, blksize, numblocks, mem)

FUNCTION
This function reads numblocks blocks of data, each block is
blksize long into continuous memory starting at mem

INPUTS
fh - DOS filehandle
blksize - size of one block
numblocks - number of blocks to be read
mem - memory location to store blocks

RESULT
blks - number of read blocks

SEE ALSO

WriteB()



CreativE 11 / 27

1.19 Set()/Sets()

Set()/Sets()

SYNOPSIS
Set(object, attr, value, ...)
Sets(object, attr, value)

FUNCTION
Assign a value assigned to specified attribute of the object

INPUTS
object - pointer to boopsi object
attr - attribute tag id
value - value to be assigned to the attribute

RESULT
none

NOTE
This function is v36+ only!

SEE ALSO

Get()

1.20 Size()

Size()

SYNOPSIS
len:=Size(fh)

FUNCTION
Obtain current file size

INPUTS
fh - DOS filehandle

RESULT
len - file size

SEE ALSO

Eof()

1.21 WriteB()

WriteB()

SYNOPSIS



CreativE 12 / 27

blks:=WriteB(fh, blksize, numblocks, mem)

FUNCTION
This function writes numblocks blocks of data, each block is
blksize long from continuous memory starting at mem

INPUTS
fh - DOS filehandle
blksize - size of one block
numblocks - number of blocks to be read
mem - memory location storing blocks

RESULT
blks - number of written blocks

SEE ALSO

ReadB()

1.22 New Keywords

This is the whole list of keywords I have added to current ←↩
release

of CreativE

LINKABLE

NOSTARTUP

POOL

UTILLIB

INLINE

UNION

INCLIB

1.23 LINKABLE

OPT LINKABLE

USAGE
OPT LINKABLE

ABOUT
This keyword (option) allows You creating linkable object code
(.o) instead of normal executable or library.



CreativE 13 / 27

NOTE
This is still a ß version and the output code may not be properly
created. I need to find some more docs about it.

1.24 NOSTARTUP

OPT NOSTARTUP

USAGE
OPT NOSTARTUP

ABOUT
This switch lets You write Your own startup code. No libraries are
opened and nothing is initialized (except execbase) in Your output
code, You have to do everythnig Yourself. It gives You the power
to request user about too old os version or cpu.

NOTE
arg string is placed in A0, not in the arg variable. You don’t
have to initialize it. You must open libraries You will use later
in your code, stdio if You want to use i/o functions and get
wbmessage. Nothing (except allocated memory and files opened with
Fopen()) will be closed at the end of program. You MUST close
everything yourself!

1.25 k0002

OPT POOL

USAGE
OPT POOL (memtype, puddlesize, threshsize)

ABOUT
This switch lets You create pool that can be used later in Your
programm e.g. via

Alloc
or anything else. Pool

pointer is stored in
__pool
variable.

Parameters are optional, so You can write simply OPT POOL to use
it.

NOTE
This is v39+ only!

1.26 UTILLIB



CreativE 14 / 27

OPT UTILLIB

USAGE
OPT UTILLIB

ABOUT
This switch enables utility.library to be used in your
programm. Some utility functions are used by patched
commands All the offsets appear automatically when You simply
switch this option on.

NOTE
This is v37+ only!

1.27 INLINE

OPT INLINE

USAGE
OPT INLINE

ABOUT
This option marks some -short- E internal commands to be placed immediately
in the code. This makes Your programs faster, but also a bit longer.
For inline command list can be found

here

1.28 k0005

UNIONs in objects

USAGE
UNION [ [a],[b], ... ]

ABOUT
Since 2.04 it is possible to UNION some members in object
definition; the main rules are:
- All the members that needs to be unified must be placed in "[]"
- Each "[]" repressents one group of members to union
- Union must start with "[" and end with "]".
- All members must be separated with commas (",")
- members that follow each union start after the biggest unioned group
- union declaration may be spreaded into several lines

EXAMPLE

OBJECT a
UNION
[

[
a, b, c



CreativE 15 / 27

],[
d:INT, e:INT, f:INT

],[
g:CHAR, h:CHAR, i:CHAR

]
]
j

ENDOBJECT

will produce:

(----) OBJECT a
( 0) a:LONG
( 4) b:LONG
( 8) c:LONG
( 0) d:INT
( 2) e:INT
( 4) f:INT
( 0) g:CHAR
( 1) h:CHAR
( 2) i:CHAR
( 12) j:LONG
(----) ENDOBJECT /* SIZEOF=16 */

1.29 Lib support

Lib files support?

USAGE
INCLIB ’libname’, ’libname’...

ABOUT
After quite hard work I managed to add sth like "lib" files support.. This
is still a beta version and many things may change; I’m sure it will support
inlines and default args, but as for now it’s hard to say; that’s why I’m not
including any example lib files, yet.

The main requirement (hehe ;) is to have a "ELIB:" assignment (suggested place ←↩
:

"E:LIB"). For each lib file two must exists:

- *.lib - the main LIB file
- *.m - description module

module format is very simple - each PROC repressents one entry in lib file, e. ←↩
g.

PROC Whatever(x,y,z,a,b,c)

Please note that _ALL_ .LIB functions MUST START WITH Capital letter preceeded ←↩
by

a small one. Another important thing is the sequence; files in descriptor must
be sorted as those in lib file. Example use - run an assembler, i.e. AsmOne.
Write sth. like e.g.



CreativE 16 / 27

MOVE.L 4(A7),A0
MOVE.L 8(A7),(A0)
RTS

Compile and write as link; note that ".lib" suffix is necessary . Now run an
editor (ced, ged or whatever) and write sth. like:

PROC PutLong(what,where)

and save with same name but different suffix (this time - ".m"). Now write a
program, e.g.

PROC main()
DEF a

PutLong(5, {a})
ENDPROC

This will change the internal "PutLong" function with the new one You wrote.

Advantages of lib files here is that not whole lib is included; only used ←↩
parts

are linked.

NOTES
-This is still a beta feature which may (but shouldn’t) disappear in one or ←↩

more
new versions (but will appear again ;).
-RELOC hunks AREN’T supported! If Your link contains a reloc hunk, compiler ←↩

will
return an error!

BUGS
None found (yet?)

1.30 New variables

This is the list of new variables I have added to current ←↩
release

of CreativE

utilitybase
points to utility.library if it was opened (see

UTILLIB
)

__pool
points to internal pool, if it was created (see

POOL
)



CreativE 17 / 27

1.31 New constants

This is the whole list of constants I have added to current
release of CreativE

TAG_DONE = 0
TAG_END = 0
TAG_IGNORE = 1
TAG_MORE = 2
TAG_SKIP = 3
TAG_USER = $80000000

OFFSET_BEGINNING = -1
OFFSET_CURRENT = 0
OFFSET_END = 1

READWRITE = 1004

1.32 New operators

// equivalent to "->"
& equivalent to "AND"
|| equivalent to "OR"
=> equivalent to ">="
=< equivalent to "<="

>> and <<

works just like "Shr" and "Shl", but NO function is called for
this. Rotation is made in the place you use it, so it’s much
faster. This works exactly like in C/C++

NEW!:
<var><oper>=<expr>, e.g. a+=3

This is a quite new thing in E, but it works pretty good. Such
expression is equivalent to <var>:=<var><oper><expr> (a:=a+3).

1.33 LONG strings

\x

This lets You insert any long value into your "LONG" string ’\x’
MUST be followed by two HEX digits describing the ascii number You
want to put instead of \x. Function will return "ERROR: Unknown
HEX number following \x" if You write something wrong. Please
note you ALWAYS have to put TWO digits, even if the whole number
fits in one. You can’t use signs here!



CreativE 18 / 27

1.34 Normal strings

\x

This lets You insert any value into string. "\x" MUST be followed
by two digits describing HEX number which is the number of ASCII
char You want to put there. You will have "ERROR: Unknown HEX
number following \x" if You do something wrong.

\!

This will insert a BELL ($07) char to Your string. When You put
this char to console, screen will flash

\v
This inserts a vertical tabulator ($0B)

1.35 Formatted I/O functions

\u

This puts unsigned decimal number. This is equal to %lu (RawDoFmt)

1.36 Assembler part

because of the number of added commands, I have put only the
most-important informations about improvements here. Sorry, folx.

- No more "weird" operand sizes (like RTS.x or MOVE.S)
- Multiplication and division can operate on longs (020+)
- Quite big instruction set - support for CPUs (68k family),

FPUs and MMUs.
- Over 400 assembler commands

Please note I don’t know all the assembler instructions so I could
miss some or some adressing modes might be not enabled. Please,
let me know if You find some ;). Also, I am looking for some good
documentations for asm instructions/adressing modes/whatever. If
You have some or You know where to get these documentations from,
please, let me know. Thanks.

Not supported commands:
-Pack
-Unpk
-Cas
-Cas2
-Chk2
-Cmp2
-CallM
-RtM



CreativE 19 / 27

1.37 The Patcher

The patcher allows generating code for different cpus/fpus/osversions
and other options; Currently only those functions are patched

Kickstart

WriteF() 37+
PutF() 37+
PrintF() 37+

1.38 I wish to thank to...

It’s a list of people I wish to thank

Wouter van Oortmerssent
... for writing the best programming language ever!

Gateway
... for keeping alive the best computer ever!

Dietmar Eilert
... for writing the BEST developers editor EVER!

Tomasz Bielinski, Tomasz Korolczuk, Grzegorz Chmiel, Rainer Müller,
Esteve Boix, Alex van Niel

for nice emails, betatesting and everything

Stephane Tavenard, Thomas Wenzel

for nice & friendly emails and for everything

Special thanks to Waldemar Skiba for patience :)... and for selling me
040 turbo card. Thanks dude, I don’t know what would I do without You 8).

and to all people I know for mailing me =)

Amiga, forever
d#P d#P

d#P d#P
d#P d#P

d#P d#P
¶#b ¶#b d#P d#P
¶#b ¶#b P d#P
¶#b ¶#b d#P
¶#b ¶#b#P
¶#P ¶#P
" "



CreativE 20 / 27

1.39 Hi, it’s me! :)

I don’t know what to write here :). It might be because of
lazyness or that I don’t know who I am for real.

Ok, shortly: feel free to email me, snail me or even call me. Here
are my addresses (snail and email ofcourse :)

snail:
Tomasz Wiszkowski
Katowicka 23/4
44-335 Jastrzebie Zdroj
POLAND

email:
error@alpha.net.pl

phone:
+48-36-471-23-21

Any new ideas? Write to me, too!!!

That’s all! Enjoy using CreativE!

ps. I NEED ß-TESTERS ;)

1.40 PreProcessor

List of preprocessor commands I have added to this release of
CreativE:

#date

1.41 #date

This preprocessor keyword is very useful when You need to place
compilation date of Your programm. Imagine You have more than one
such date. What will You do then? You simply use this keyword!
Usage is very simple

#date store fmtstring

Ok. This macro keyword allows You to insert current date in any format
You wish. The format is defined in format string. Supported keys:

%d - day nr
%m - month nr
%y - year nr (4 digits)



CreativE 21 / 27

%D - day (name)
%M - month (name)
%Y - year nr (2 digits)
%aD - day (abbreviated name)
%aM - month (abbreviated name)

So, if You want a e.g. version string, You can write sth like:

#date Version ’$VER: SpaceSheep v0.0 (%d.%aM.%Y) by LittleGreenMan’

and put it somewhere in your source... the only thing You must take care of
is the version ;).

1.42 What’s that?

Blabla is a polish group that associates OS-friendly programmers.
All the programms written by our members will work on most Amiga
machines and are compatible with all the better configurations.
Our programms are usually released as PD, FD or shareware, so You
can spread them as long as You want.

For more informations, suggestions, knowledge exchange or anything
else write to any of BlaBla member

1.43 New error and warning messages

A short description of error mesages...

unknown HEX value after \x

PROBLEM:
This error will appear every time when You use a "\x" sentence in Your ←↩

string
with incorrect HEX number (e.g. "\xZG" etc). Please note "\x" always eats ←↩

TWO
characters, not one.

HELP:
Check Your strings for an incorrect "hex" numbers

value expected

PROBLEM:
Error appears every time You use e.g. a variable when a value is expected, ←↩

e.g.
when You use a variable describing extra place in Your library definition

HELP:
Simply place an immediate value or constant in such place.



CreativE 22 / 27

")" expected

PROBLEM:
You’ve probably forgotten to close a bracket :)... most commands does not ←↩

support
it, yet, but they surely will. Example: GetA4(

HELP:
Put a closing bracket

even number expected

PROBLEM:
An even number is required. This pops up especially when You try to create
a library space with odd number of bytes

HELP:
Round Your value to two

you need a newer OS for this

PROBLEM:
You have probably used a compiler option which is not supported by Your
operating system. This message will usually pop when You’re tring to use
some compiler ops (e.g. #date) on a pre-2.0 operating system

HELP:
Well... You must try to remove the object that causes this error or map ←↩

Your
ROM/buy a new kickstart

unable to open resource

PROBLEM:
CreativE is unable to open a required resource (e.g. battclock.resource to ←↩

use
with #date preprocessor macro)

HELP:
Reboot Your amiga and try again

this instruction needs a newer OS version (see OPT)

PROBLEM:
The command(s) You’ve used are not supported by the system you’re ←↩

compiling
a program to.

HELP:
change OSVERSION setting (e.g. OPT OSVERSION=37)

illegal size



CreativE 23 / 27

PROBLEM:
The assembler size is not supported by mnemonic (e.g. ADDA.B)

HELP:
fix up the size or remove it.

fpu register expected

PROBLEM:
The assembler mnemonic requires at last one FPU register (usually all
Fxxxx do) or at last one FPU control register

HELP:
Check out the command syntax

":" expected

PROBLEM:
a colon is required

HELP:
put a colon in a proper place

mmu register expected

PROBLEM:
The assembler mnemonic requires at last one MMU register (usually all
Pxxxx do) or at last one MMU control register

HELP:
Check out the command syntax

contol register expected

PROBLEM:
(usually appears with MOVEC mnemonic) - the assembler command requires
at last one control register

HELP:
Check out the command syntax/put a control register in a proper place

cpu register expected

PROBLEM:
The mnemonic You’ve used requires a CPU register

HELP:
Check out the command syntax/put a control register in a proper place

this instruction works only in pool mode



CreativE 24 / 27

PROBLEM:
You’ve used probably an instruction which needs a pool to be present (e.g.
Alloc())

HELP:
add a POOL keyword to OPT settings

not allowed in library mode

PROBLEM:
The instruction You’ve used does not work in library mode (e.g. GetA4())

HELP:
Remove or replace the instruction.

WARNINGS

040/060 emulated instruction(s) used

PROBLEM:
You’ve used some emulated instructions in Your assembly code; it means
that Your programm will work slower on 040/060 CPUs

1.44 Inline commands

Since 2.01 I’ve enhanced E with Inline commands. It means that
such commands are NO LONGER called (with BSRs); they’re placed
directly in the place of call, so are working as fast as they
were a simple "+" or "*" in the expression. To use the inline commands
please look at description of

INLINE
keyword.

Patched are:

- Abs
- And
- Car
- Cdr
- Char
- Div (020+)
- Eor
- Eval
- Even
- Exit
- Fabs
- Facos
- Fatan
- Fasin
- Fceil



CreativE 25 / 27

- Fcos
- Fcosh
- Fexp
- Ffieee
- Ffloor
- Flog
- Flog10
- Fpow
- Fsin
- Fsincos
- Fsinh
- Fsqrt
- Ftan
- Ftanh
- Ftieee
- Int
- Long
- Mod (020+)
- MouseX
- MouseY
- MsgCode
- MsgIaddr
- MsgQual
- Mul (020+)
- Not
- Odd
- Or
- PutChar
- PutInt
- PutLong
- RndQ
- Shl
- Shr

1.45 Other things

Yes... Well, this chapter contains only stuff I don’t know
where to put... hehe q:)c=

Object members

Another IF format

Modules vs inlines

Expressions swap

1.46 Member



CreativE 26 / 27

Object members

Since 2.01 it is possible to make an assignment to any object’s
member inside the immediate list. Please note it is a beta feature
but it _should_ work anyway. So, it is now possible to do things
like:

a:=[b[c].d:=e]:x

1.47 Another IF expression format

Another IF format

I’m sure that many ppl will blame me for using C/C++ features in E
compiler but I think that if there’s a way to do sth easier, it
should be implemented.. Ok, and here it is. The format is:

<exp> ? <texp> : <fexp>

Ofcourse this feature can be a bit deeper (read: you can use one
in another, like brackets). <exp> stands for any expression to
be checked, <texp> stands for expression to be calculated in case
of true and <fexp> is the one to be calculated in case of false.
THIS IS A BETA FEATURE, but should work fine.

1.48 Modules vs inline code

Modules vs inline code

Yes... this was the main problem the programs compiled with INLINE
option crashes because of. Now (hehe... a bit too late) the compiler
is a bit smarter - checks whether the inline code is used by the
module to encounter whether copy it or not.

1.49 Expressions swap

Expressions swap

I think it’s a useable feature ;). Imagine You can calculate at once two
expressions and store them in specified variables later. It means that
i.e. You don’t have to define additional vars for temporary use; now:

<exp1>:=:<exp2>

will solve this problem. The results will be stored in the last-used
variables (i.e. in a+b/c*d, "d" is the last one). Multiple use of it
is possible but the variables are set after each two (i.e. when You
write sth like:

a:=:b:=:c
first a is swapped with b and then b is swapped with c)



CreativE 27 / 27

I know it’s a bit weird but it’s very difficult to explain it. Maybe a little
example:

PROC main()
DEF a=1, b=10, c=2

WriteF(’a=\d, b=\d, c=\d\n’, a, b, c)
a+15:=:b/2:=:c*2
WriteF(’a=\d, b=\d, c=\d\n’, a, b, c)

ENDPROC

will produce:

a=1, b=10, c=2
a=5, b=4, c=16

so, first a+15 is calculated (=16) and put on stack; then b/2 is calculated
and stored in "a". Then, b is set with value from stack and another swap
is done.

IMPORTANT NOTE!

This "thing" is only for variables, NOT for objects and members. SO! If you
do sth. like:

a.b.c:=:d.e.f

then ONLY POINTERS are set with expression values! In this case it is equal
to sth. like:

t:=a
a:=d.e.f
d:=t.b.c


	CreativE
	CreativE
	Introduction
	Compatibility
	New commands
	Alloc()
	Chk()
	CoerceMethod()/CoerceMethodA()
	CtrlD()/CtrlE()/CtrlF()
	DoMethod()/DoMethodA()
	DoMethod()/DoMethodA()
	Eof()
	Fclose()
	Fopen()
	Free()
	Get()/Gets()
	GetA4()
	PutF()
	ReadB()
	Set()/Sets()
	Size()
	WriteB()
	New Keywords
	LINKABLE
	NOSTARTUP
	k0002
	UTILLIB
	INLINE
	k0005
	Lib support
	New variables
	New constants
	New operators
	LONG strings
	Normal strings
	Formatted I/O functions
	Assembler part
	The Patcher
	I wish to thank to...
	Hi, it's me! :)
	PreProcessor
	#date
	What's that?
	New error and warning messages
	Inline commands
	Other things
	Member
	Another IF expression format
	Modules vs inline code
	Expressions swap


